Product fiche concerning the COMMISSION DELEGATED REGULATIONS

(EU)No 811/2013 of 18 February 2013

(EU)No 813/2013 of 2 August 2013

Air Source Heat Pumps

Space Heating Test Standard: EN14825

DHW Test Standard: EN16147

Grant Engineering (Ireland) ULC Barrack Street, Crinkle, Birr, Co. Offaly, R42 D788, Ireland.

t: +353 (0)57 91 20089 f: +353 (0)57 91 21060 e: info@grantengineering.ie w: www.grantengineering.ie

Model	Outdoor unit:	Aerona ³ HPID17R32		
	Indoor unit:	None		
Air to Water Heat Pump		Yes		
Brine to Water Heat Pump		No		
Low Temperature Heat Pump		No		
Equipped with Supplementary Heater		No		
Heat Pump Combination Heater		Yes		
Parameters shall be declared for	Medium Tem	perature Applications (55°C)		
Parameters shall be declared for	Averag	Average Climate Conditions		

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated Heat Output (*)	Prated	12.2	kW	Seasonal space heating energy efficiency	ηs	143	%
Declared capacity for heating for pa		oor		Declared coefficient of performance			•
Temperature 20°C and outdoor tem				part load at indoor temperature 20°C			
$Tj = -7^{\circ}C$	Pdh	12.80	kW	$Tj = -7^{\circ}C$	COPd	2.34	-
Degradation co-efficient (**)	Cdh	0.99	-				
$Tj = +2^{\circ}C$	Pdh	7.40	kW	$Tj = +2^{\circ}C$	COPd	3.61	-
Degradation co-efficient (**)	Cdh	0.99	-				
$Tj = +7^{\circ}C$	Pdh	9.10	kW	$Tj = +7^{\circ}C$	COPd	5.21	-
Degradation co-efficient (**)	Cdh	0.98	-				
$Tj = +12^{\circ}C$	Pdh	6.11	kW	$Tj = +12^{\circ}C$	COPd	8.12	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = bivalent temperature	Pdh	11.40	kW	Tj = bivalent temperature	COPd	2.05	-
Tj = operation limit temperature	Pdh	11.40	kW	Tj = operation limit temperature	COPd	2.05	-
$T_{j} = -15^{\circ}C \text{ (if TOL} < -20^{\circ}C)$	Pdh	_	kW	$T_i = -15^{\circ}C \text{ (if TOL} < -20^{\circ}C)$	COPd	 	
Bivalent temperature	Thiv	-10	°C	Operation limit temperature	TOL	-10	°C
2. Talent competation	1000	10		Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other	than active m	nde		Supplementary Heater			
Off Mode	POFF	0.01	kW	Rate heat output	P _{sup}	0	kW
Thermostat-off mode	P _{TO}	0.01	kW	Rate heat output	1 sup	U	K VV
Standby mode	P _{SB}	0.04	kW	Type of energy input			
Crankcase heater mode	P _{CK}	0.00	kW	Type of energy input			
Crankcase neater mode	1 CK	0.00	K VV				
Other items							
Capacity control	Variable			Rated airflow rate, outdoors	-	4464	m³/h
Sound power level indoors/outdoors	$L_{W\!A}$	41/61	dBA			1	1
Annual Energy consumption	Q_{HE}	6598	kWh				
For heat pump combination heater				Water heating anarov officiency	and -	99	%
Declared load profile	I	L	l	Water heating energy efficiency Reference Hot Water Temperature	ηwh θ'w _H	49.42	°C
Daily electricity consumption	Oelec	4.86	kWh	Actual Volume of cylinder under test	U WH	206.8	Litres
Annual electricity consumption	AEC	1033.86	kWh/a	Standby Cylinder Heat Loss	1	1.76	kWh

Contact Details:

Grant Engineering (Ireland) ULC, Barrack Street, Crinkle, Birr, Co. Offaly, R42 D788, Ireland.

(*) For heat pumps space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0.9.

Model	Outdoor unit:	Aerona ³ HPID17R32		
	Indoor unit:	None		
Air to Water Heat Pump		Yes		
Brine to Water Heat Pump		No		
Low Temperature Heat Pump		No		
Equipped with Supplementary Heater		No		
Heat Pump Combination Heater		Yes		
Parameters shall be declared for	Low	Temperature Applications (35°C)		
Parameters shall be declared for	1	Average Climate Conditions		

Item	Symbol	Value	Unit	Item	Symbol	Value	Unit
Rated Heat Output (*)	Prated	12.8	kW	Seasonal space heating energy efficiency	ηs	182	%
Declared capacity for heating for pa		or		Declared coefficient of performance			
Temperature 20°C and outdoor tem	perature Tj			part load at indoor temperature 20°C		perature Tj	
$Tj = -7^{\circ}C$	Pdh	12.0	kW	$Tj = -7^{\circ}C$	COPd	3.06	-
Degradation co-efficient (**)	Cdh	0.99	-				
$Tj = +2^{\circ}C$	Pdh	7.70	kW	$Tj = +2^{\circ}C$	COPd	4.61	-
Degradation co-efficient (**)	Cdh	0.99	-				
$Tj = +7^{\circ}C$	Pdh	9.20	kW	$Tj = +7^{\circ}C$	COPd	6.75	-
Degradation co-efficient (**)	Cdh	0.98	-				
$Tj = +12^{\circ}C$	Pdh	6.20	kW	$Tj = +12^{\circ}C$	COPd	9.64	-
Degradation co-efficient (**)	Cdh	0.99	-				
Tj = bivalent temperature	Pdh	12.5	kW	Tj = bivalent temperature	COPd	2.81	-
Tj = operation limit temperature	Pdh	12.5	kW	Tj = operation limit temperature	COPd	2.81	-
Tj = -15°C (if TOL < -20°C)	Pdh	-	kW	$T_i = -15^{\circ}C \text{ (if TOL} < -20^{\circ}C)$	COPd	-	
Bivalent temperature	Tbiv	-10	°C	Operation limit temperature	TOL	-10	°C
•			1	Heating water operating limit temperature	WTOL	60	°C
Power consumption in modes other	than active m	ode		Supplementary Heater			
Off Mode	P_{OFF}	0.10	kW	Rate heat output	P _{sup}	0.00	kW
Thermostat-off mode	P_{TO}	0.04	kW				
Standby mode	P_{SB}	0.10	kW	Type of energy input		-1	1
Crankcase heater mode	P_{CK}	0.00	kW	71 23 1			
041				T		1	1
Other items Capacity control	Variable		I	Rated airflow rate, outdoors	-	4464	m³/h
Sound power level	L_{WA}		dBA	Rated airriow rate, outdoors	-	4404	1114/11
indoors/outdoors	$L_{W\!A}$	41/61	ubA				
Annual Energy consumption	Q_{HE}	5401	kWh				
For heat pump combination heater				Water heating energy efficiency	η_{wh}		%
Declared load profile		NA		, and heating energy efficiency	I WII	1	/0
	Oelec		kW/h	1			
Daily electricity consumption	Qetec		K VV/II				

Contact Details:

Grant Engineering (Ireland) ULC, Barrack Street, Crinkle, Birr, Co. Offaly, R42 D788, Ireland.

(*) For heat pumps space heaters and heat pump combination heaters, the rated heat output Prated is equal to the design load for heating Pdesignh, and the rated heat output of a supplementary heater Psup is equal to the supplementary capacity for heating sup(Tj).

(**) If Cdh is not determined by measurement then the default degradation coefficient is Cdh = 0.9.

End of Life Information – Air Source Heat Pumps

General

Grant air source heat pumps incorporate components manufactured from a variety of different materials. However, most of these materials cannot be recycled as they are contaminated by the refrigerant and oil used in the heat pump.

Disassembly

This product may only be disassembled by a suitably qualified (F-gas) refrigeration engineer. Under no circumstances should the refrigerant be released into the atmosphere.

Recycling

In order for the heat pump to be recycled or disposed of it must be taken to a suitably licensed waste facility. You will need to contact a qualified refrigeration engineer to do this for you.

Disposal

The refrigerant will be removed and returned to the refrigerant manufacturer for recycling or disposal.

The complete heat pump unit, including the compressor and the oil contained within it, must be disposed of at a licensed waste facility, as it remains contaminated by the refrigerant.

11-05-2020

Authorized by:

Grant heat pump fiche. SD004 11/05/2020 V1.5

Peter Dancy

GRANT